基于三维数据源的机匣零件工艺方案设计

Process Plan Design of Casing Parts Based on Three-Dimensional Data Source

■ 牛存可 刘赟奕 康靖宇 左秋阳 马镇镇 李鹏飞 王婷 窦远 毛鸿伟/中国航发黎明

一种新的基于三维数据源的二维并行工艺准备模式,使工艺与设计的对接更加直观、准确,极大地降低了数据源传输和转换过程的出错率,待与设计实现产品数据管理(PDM)系统对接后,完全可以直接引用设计模型进行工艺准备,为设计并行工程打下基础。

1840年蓝图被发明以来, 工程师一直使用二维平面 工程视图来描述产品, 使 其成为第一代工程语言。如今,虽 然所用设计工具已从二维变成了三 维,但制造图样大多还停留在二维 平面的形式,这种不匹配制约了设 计、制造效率的提升。三维工艺是 未来工艺模式发展的必由之路,但 现阶段很多企业受制于技术人员三 维设计能力有限及现场硬件配置不 到位等因素的影响, 还无法全面推 广纯三维工艺模式。中国航发黎明 的创新团队以三维数据源为基础, 结合现场实际情况,制定了一套基 于三维数据源的二维并行工艺准备 模式,为全面推广基于定义的模型 (MBD)工艺模式打下基础。

现行工艺准备模式存在的 问题

随着设计工具的不断改进,设计数据的传输形式也逐步由二维模式改为三维模式,在工厂存在两种形式设计图并存的状态。这种设计数据搭载形式的不同,给工艺准备造成

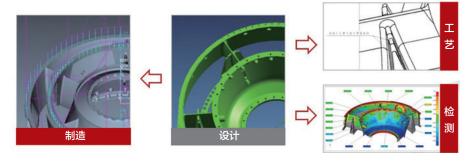


图1 零件全生命周期过程示意图

了很大影响。

随着数字化制造技术与数字化 检测技术的不断发展,三维模型将 成为零件全生命周期管理的唯一载 体(如图1所示)。未来,零件从设计、 工艺、制造到检验验收将逐渐基于 统一的数字模型来实现,因此三维 工艺全面取代二维工艺只是时间问 题。

现阶段,多数单位受制于工艺 人员三维设计能力有限和现场硬件 配置不到位等问题,短期内无法全 面推行纯MBD三维工艺,因此需要 探索一条连接二维工艺与三维工艺 之间的过程工艺模式,从统一工艺 准备数据源形式开始,提高全员的 三维设计能力,为实现纯三维工艺模式打好基础。

总体思路及解决方案

该项目属于工艺基础管理模式研究, 涉及工艺规程编制和并行工程,所 执行的标准之间存在冲突。因此, 创新团队按照先理论分析,后实践 验证的过程开展工作;而验证过程 按照从简单到深入,从局部到全部 的方法逐步展开。

在理论研究方面,重点是解决制约新工艺模式开展所面临的问题。对于新工艺模式,统一数据源为三维数据后,输出的仍是二维的工艺规程、三维的数控和工装设计数据。

因此, 需解决的主要问题是如何实 现三维数据源到二维工艺的转化及 工艺、数控、工装并行问题。

为了解决上述问题, 创新团队 制订了如下实施方案。

第一步,研究从三维模型到二 维图形的转换方法。在原导出方案 的计算机辅助设计(CAD)软件图 形中会存在大量重复线条及隐藏线 条,且轮廓线不连续,图形无法使用; 现导出方案则通过对UG软件(一种 交互式计算机辅助设计与计算机辅 助制造系统)进行深入研究,找到 从UG模型导出CAD图形的正确方 式,制定相应操作规则,确保导出 后无重复线条及多余线条。

第二步, 实现各工序间三维模 型的wave关联。针对现有产品数据 管理(PDM)系统研究应用插件, 实现工艺编制各工序模型在PDM系 统中的建立和wave关联,统一所有 工艺的输入数据源。

第三步,使用一般简单零件为 载体验证新工艺模式。

第四步,使用复杂零件为载体 验证新工艺模式。

第五步,解决新工艺模式中数 控并行的相关问题。通过在测试过 程中不断收集问题,制订新的数控 并行方案。原模式数控模型的建立 方法是通过对比模型与毛料模型单 独建立, 先用毛料模型进行加工仿 真,再用对比模型进行对比测量; 新模式数控模型的建立方法则是用 本工序模型作为对比模型和程序编 制模型,使用上述工序模型作为加 工仿真模型,无须单独另建模型。

第六步,解决新工艺模式中工 装并行的相关问题。先用本工序模型 直接进行工装三维设计,再用PDM 系统中的工装资源库及相关工装查 询模块完成工装与工艺规程的挂接, 然后在UG系统中利用工序模型和工 装模型生成具有指导意义的CAD视 图,并在工艺规程中添加这些视图 提高工艺规程对现场的指导性。

第七步,建立辅助优化工艺模 式。从模块化建模概念入手, 研究 应用UG软件中的高级建模功能,提 高建模效率;完成零件成组划分, 针对同组零件总结建模顺序,制作 统计表格,用于指导后续零件建模 工作。

第八步, 也是最后一步, 推广 验证工艺模式。对新工艺准备模式 展开全面验证,并最终完成整个工 艺模式的固化, 编制相应操作说明 书。

方案实施情况

从三维模型到二维图形的转换 方法

经过大量试验发现, 在导出 CAD 图形时,系统会选择 UG 建模环 境中的实体, 因此最终确定先在制

图环境中获得所需视图, 再将得到 的视图转化为额外的UG二维模型, 随后进行CAD文件的导出操作, 最 终得到了可用的二维图形。

实现各工序间三维模型的 wave关联

创新团队与西北工业大学合作, 针对现用的PDM系统开发三维PPM 插件, 实现了零件各工序模型在 PDM 系统内的 UG 创建和 wave 关联。

用一般简单零件验证新工艺模式

解决完以上两个问题后,工艺 模式过程已经打通, 以简单零件为 载体开始进行工艺模式验证测试, 并针对新的工艺准备模式设计了工 艺编制流程,如图2所示。新工艺模 式下最大的改进是, 工序图形的获 取方式改为了由三维模型导出获得。

为给并行模式的推进打好基础, 项目组制定了工序模型建模原则和 工艺规程尺寸标注原则, 工序模型 建模尺寸一般使用名义值进行建模, 数控程序编制时一般要求为中差建 模, 而工艺编制使用入体原则标注, 为此创新团队分别就入体原则和中 差原则的优缺点进行了研究。通过 分析对比, 最终确认工序模型建模 原则为按照工序名义尺寸建模;工 序尺寸标注原则为普通机床工序按

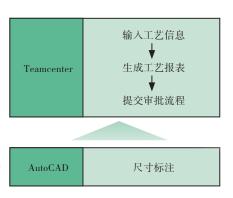


图2 新工艺模式执行流程图

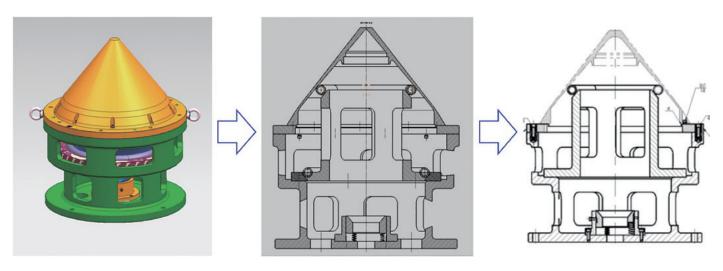


图 3 新工艺模式下工装设计相关操作示意图

照入体原则标注公差, 数控机床工 序按照中差原则进行标注。最后, 针对相关原则完成了操作说明的编 制固化。

用复杂零件验证新工艺模式

对于新工艺模式来说,复杂零 件与简单零件的区别在于其由多个 零件构成, 所以需要多个模型装配 后获得可用UG模型, 而UG模型在 PDM系统中的存放方式决定了其无 法在线下被直接引用。因此,项目 团队通过使用替换组件的方式对装 配关系重新进行了匹配,获得了可 用模型,其余与简单零件操作完全 一致。

包含数控并行的新工艺模式编 制验证

新工艺模式进行数控并行的主 要问题在工序模型的共用上。由于 新工艺模式下的各工序均有满足数 控程序编制和仿真要求的工序模型, 因此可使用本工序模型作为数控程 序编制和对比仿真的模型, 使用上 一工序模型作为数控程序加工的毛 坯模型。由于PDM系统架构问题, 无法直接引用工序模型,经过测试,

创新团队确定了间接引用方案,实 现了工序模型的引用。

包含工装并行的新工艺模式编 制验证

中国航发黎明现阶段已经开始 全面推行工装三维化设计, 而且新 工艺准备模式下,各工序三维模型 均已获得, 因此可以直接进行工装 设计及装配仿真,而且可以通过剖 切来获得工序的辅助装夹说明视图, 如图3所示。

同时,黎明公司所有工装物料 清单(BOM)均在PDM系统工装资 源库中存储,新工艺模式要求工艺 规程编制时从Inclass库中进行工装 引用,由此建立工装BOM与主制工 艺的关联。

新工艺模式辅助优化

为了提高建模效率, 创新团队 从模块化建模概念入手, 研究了应 用UG软件中的高级建模功能,使用 并推广了UG表达式、UG用户自定 义特征和UG PTS功能,完成了《UG 表达式功能使用说明》《UG用户自 定义特征使用说明》《UG PTS功能 使用说明》的编制。

建立《机匣典型零件标准建模 顺序及原则》。应用成组技术完成机 匣类零件成组划分,针对典型零件 总结建模顺序,建成统计表格,用 于指导后续零件建模工作。

推广验证新工艺模式

依托新型号研制任务, 使用新 工艺模式验证编制工艺规程44本, 验证均无问题。批量验证完成后, 完成了《面向机匣零件的三维剖切 工艺编制说明书》的编写。

结束语

目前,该工艺模式已完全推广至所 有机匣类零件的工艺准备工作中, 本项目总结出的各项原则与方法可 以推广应用到所有机械加工领域。 同时,该模式还统一了工艺、数控、 工装和检测四方面工作的数据源, 提高了全体工艺人员三维设计水平, 实现由二维平面逐渐向三维立体的 过渡,为全面推广MBD工艺模式打 下基础。 航空动力

(牛存可,中国航发黎明,工程 师, 主要从事机匣类零件机械加工 工艺技术研究)