基于迁移学习的燃油调节系统性能退化 监控方法研究

Research on Performance Degradation Monitoring Method of Fuel Adjustment System Based on Transfer Learning

■ 刘伟民 殷骏 徐占艳 杨天林 / 中国航发控制系统研究所

航空发动机的安全性和可靠性与其燃油调节系统息息相关,据统计,约七成的航空发动机故障是由燃油调节 系统引起的。对个体差异的燃油调节系统在不同使用阶段的退化规律开展研究,可以为提升航空发动机安全 性和可靠性提供重要支撑。

▶ 油调节系统作为航空发动 机控制的核心系统之一, **>>>**其控制性能直接影响供油 稳定性与准确性[1-2]。然而,由于恶 劣的工作环境,其零部件会难以避 免地出现性能退化现象,直接影响 发动机的安全性与可靠性。当前相 关学者在燃油调节系统性能衰退方 面已开展了一定的研究,例如,冯 海峰等建立了燃油调节系统的非线 性数学模型,获得了影响燃油调节 系统性能的关键结构参数[3]; 丁琳 等基于燃油调节系统机理建立了燃 油调节系统数学模型,并进行了数 值仿真研究,揭示了燃油调节系统 的控制规律[4]; 韦祥等建立燃油调 节系统联合仿真模型,并基于模型 将燃油调节系统故障诊断转换为发 动机监控参数模式识别的问题[5]。 但是,这些研究多基于特定模型或 特定产品,存在一定局限性,其原 因在于:由于制造公差、装配误差 等原因,即使是同一型号同一批次 的两套产品,其性能都会有一定的 差异: 燃油调节系统的监控测点较 少,故障或性能衰退通常无法直接 表示;发动机供油退化是一个缓慢

过程,数据量不足时难以描述整个 退化过程。因此,需要大量真实运 行数据支持,才能有效地进行故障 诊断与性能预估。

针对上述问题,本文基于迁移 学习的方法建立燃油调节系统的高 精度模型,并基于模型对燃油调节 系统的性能衰退进行了评估。

发动机燃油调节系统

发动机燃油调节系统主要用来在各 种飞行条件、不同飞行状态下给发 动机燃烧室提供燃油。燃油调节系 统的控制系统保证供给和调节发动 机在各种稳定工作状态和起动、加 减速过程中所需要的燃油量,且保 证飞机在飞行包线限制范围内涡轮 前温度、压气机出口压力,以及转 子转速不超过规定的限制值,从而保 障发动机在各使用条件下安全可靠的 工作,燃油调节系统结构如图1所示。

燃油小闭环主要根据控制规律 计算出来的计量位置来控制计量阀的 开度,以达到计量输出所需要的燃油 流量。发动机根据自身燃气发生器 转速、动力涡轮转速、动力涡轮输 出扭矩、总距杆、旋翼转速等参数, 以及发动机控制计划,得到油针阀 位移的指令值;油针阀位移的指令 作为燃油小闭环的输入,在燃油小 闭环中,根据指令与反馈的差值, 计算得出电液伺服阀所需的电流;

图2 卷积神经网络

电液伺服阀根据输入的电流改变计 量阀开度,提供燃油至发动机;随 着实际燃油量的改变,发动机的状 态会相应地变化,从而计算出新的 计量位置指令形成供油大闭环。

假设在发动机刚交付时,达到 状态A所需的油针位置指令为油针 位置指令A(LGtDem_A),实际的供 油量为供油量A(WF_A)。随着发动 机使用时长的累积,燃油系统性能 逐渐退化,但是想要发动机达到状 态A,实际的 WF_A 不变,此时需要 比发动机刚交付时更高的油针位置 指令B(LGtDem_B),才能提供相同 的 WF_A 。因此可以通过比较LGtDem_B 与LGtDem_A来衡量燃油调节系统的 退化程度。

基于迁移学习的发动机供油 模型建模

建立基于卷积神经网络的燃油 调节系统基准模型

卷积神经网络是多层感知器的 变种,由生物学家在关于猫的视觉 皮层的研究发展而来¹⁶,最初被广 泛应用于图像识别领域。由于卷积 神经网络可以高效地将低层特征组 合成高层的抽象特征,目前已经成 为了众多学科领域的研究热点之一。 卷积神经网络由卷积层、池化层与 全连接层组成,如图2所示。

卷积层通过局域感受野的方法,

提取数据的局部特征,同时利用权 值共享的方法减少卷积神经网络的 参数数量;池化层通过次抽样的方 法有效缩减数据的尺寸,可以达到 加快计算速度与防止过拟合的效果; 全连接层利用卷积层与池化层提取 出的特征完成回归或分类任务。本 文基于卷积神经网络建立的供油系 统模型结构如图 3所示。

图3中模型的输入为发动机的 燃气发生器转速、动力涡轮转速、 动力涡轮输出扭矩、总距杆、旋翼 转速、发动机离心压气机出口压力、 燃气涡轮出口总温、导向叶片位置 给定、载荷杆总距,9个与计量阀位 置相关的参数;模型架构前半部分 有3个分支:中间分支为大小适中的 卷积核,该分支的作用为提取输入

信息特征;上分支由1个的卷积层组 成,其卷积核的尺寸与输入数据的 尺寸相同,该分支的作用为从各传 感器在当前时刻采集的数据中提取 航空发动机当前时刻工作状态特征; 下分支同样由1个卷积层组成,该 卷积层的卷积核尺寸为1×1^[7],目的 是抑制相邻传感器之间的相互影响。 供油系统神经网络各层的参数如表1 所示。

各层激活函数均为缩放指数线 性单元,该激活函数可以使得数据 自归一化,保证训练过程中梯度不 会爆炸或消失⁽⁸⁾。供油系统模型在训 练阶段的目标是最小化网络的损失 函数*L*(*W*,*b*)。损失函数由两部分 组成:一部分是输入数据通过前向传 播后通过损失函数计算出与期望值之 间的残差,另一部分是过拟合作用的 强度。训练过程中,卷积神经网络常 用的优化方法是梯度下降的方法。通 过损失函数的反向传播,逐层更新卷 积神经网络各层的可训练参数。

建立基于迁移学习的燃油调节 系统特有模型

由于制造公差与使用条件的不 同,同一型号的不同台份发动机的 供油特性可能具有较大差异,本研

	名称	尺寸
输入层	_	1×9
卷积层	卷积核1	1,3,1,5
	池化层1	1,1,2,1
	卷积核2	1,9,1,10
	池化层2	1,1,1,1
	卷积核3	1,1,1,1
	池化层3	1,1,1,1
全连接层	基准模型-全连接层	44×20
输出层	—	20×1

表1 各层参数

图4 迁移学习过程

究采用迁移学习的方法解决上述问题,迁移学习是机器学习领域的一 大重要分支,在近10年来发展迅速, 此类学习范式主要指利用数据、任 务或模型之间的相似性,将在旧领 域训练过的学习模型,应用于新领 域的一种学习过程。对于图 3所示 的燃油系统模型结构,其迁移学习 的过程如图 4所示。

具体实施时,在基准模型训练 阶段,对模型中的所有神经元进行 更新。基准模型训练结束后,其卷 积层可以将发动机传感器采集到的 原始数据中的抽象特征提取出来, 输出至全连接层进行回归计算。在 进行迁移学习时,保留可以提取原 始数据特征的卷积核不变,仅对全 连接层的参数进行更新。

模型训练与精度验证

发动机基准模型训练时,选定 涡轴发动机作为研究对象,选取每 台发动机前5个飞行架次数据作为基 准模型的输入,基准模型的训练过 程与精度如图5所示。可以看出,在 150余次迭代后,基准模型基本收敛。

发动机特定模型训练时,选取 每台发动机前10个飞行架次数据作 为迁移模型的输入,特有模型训练 过程与精度如图 6所示。可以看出, 对于该台发动机,仅20余次迭代, 模型就已经收敛,且模型误差较基 准模型有一定的下降,这表明特有 模型可以更好地表示该台发动机的 特性。

对于这台发动机,任选3个架 次比较基准模型与特有模型的精度, 对比结果如图7所示。

可以看出,基准模型虽然可以 很好地对发动机的供油量进行回归 计算,绝对误差在0.15左右,架次3 上最大误差达到了0.2左右,精度较 差。利用该台发动机前几次飞行数 据进行迁移模型的训练后,得到的 模型精度较高,最大绝对误差仅在 0.05,满足供油退化分析的需求。

基于燃油调节系统模型的 供油衰退化分析 研究方法概述

发动机每次飞行时,由于训练

(c) 架次 3

图7 基准模型和特有模型的比较

科目或者作战任务不同,其载荷谱 有较大差异。为了更好地衡量发动 机的偏移情况,本文通过图 8所示方 法进行研究。首先,对发动机进行 时间段的划分,根据发动机的统计 使用寿命,把发动机分为数个服役 阶段,并利用迁移学习的方法在每 个服役阶段建立精度较高的发动机 数据驱动模型;然后,建立各服役阶

段模型,从各类用户实际角度出发, 选取了几个典型载荷谱;随后,将载 荷谱作为输入,利用各个服役阶段的 模型输出各阶段模型的供油情况;最 后,分析比较供油情况,结合专家经 验对燃油系统退化情况进行评估。

单台份供油退化分析

以1台涡轴发动机作为研究对 象,通过迁移学习的方法建立了刚 交付使用10架次、中间10架次和返 厂前最后10架次的特有模型;选取 了3个该型号发动机使用的典型载荷 谱。基于上述模型与载荷谱,计算 得出该台发动机供油情况如图9所 示。可以看出,随着发动机的使用

图9 典型载荷谱供油情况

架次与小时数的累加,达到相同工 作状态所需要的供油量逐渐上升。

机队供油退化分析

对单台份供油退化分析时,任 意选取1台发动机数据作为研究对 象,进行了基于迁移学习的建模方 法研究,建立了刚交付、中间和返 厂前3个阶段的模型。由于发动机使 用环境复杂,各用户维护手段不一 致,所以任选1台发动机可能会有随 机性。在进行机队供油退化分析时, 任选3台发动机,将这3台发动机全 生命周期划分为数个阶段,并利用 载荷谱1对这3台发动机进行供油分 析,结果如图10所示。

图 10中, 横坐标为发动机当前架次在全生命周期中的位置,例如, 假设1台发动机共飞行200架次,则刚交付使用后的第1架次的横坐标为0.5%, 第200架次的横坐标为100%; 纵坐标为供油偏移量。

可以看出,在发动机刚交付使 用的前15%左右架次,由于机械磨 合等原因,在同样载荷谱下所需要的 燃油量逐渐下降,下降量在0.05~ 0.1;随后,由于齿轮泵磨损、弹簧 刚度退化、内部阀门偏磨导致内漏 增加等原因,对比刚交付时的发动 机,在发动机到达使用寿命中期时,

图10 架次趋势示意

油针给定值约上升0.1;在发动机使 用到返厂时,油针给定值约上升0.2。 随着燃油调节系统供油特性的退化, 达到同样的载荷谱所需要的燃油流 量逐渐上升。

结束语

本文基于迁移学习方法构建了高精 度的航空发动机燃油调节系统模型, 并利用该模型对燃油调节系统的性 能退化进行了系统性评估,在实际 应用中取得了显著成效,在日常监 控中成功检测出4台发动机的燃油调 节系统供油量偏离模型预测值,并 及时采取了相应的监控措施。随着 航空发动机型号的定型和交付,不 断积累数据,该方法有望进一步推 广应用于航空发动机气路、滑油等 其他关键系统的性能退化监控,为 全面提升航空发动机运行安全性提 供坚实的技术支持。

(刘伟民,中国航发控制系统研 究所,工程师,主要从事航空发动 机健康管理、数字治理等研究)

参考文献

[1] LINK C J, JACK D M. Aircraft engine controls: design system analysis, and health monitoring[M]. Reston: American Institute of Aeronautics and Astronautics, 2009: 207-237.

- [2] 孙建国.现代航空动力装置控制[M].北京:航空工业出版社,2001.
- [3] 冯海峰,樊丁.某型航空涡轴发动机 燃油调节器建模与仿真[J].计算机仿 真,2014,12(24): 45-48.
- [4] 丁琳,王道波,李猛,等.直升机涡
 轴发动机燃油调节系统建模与仿真
 [J]. 航空兵器,2011,8(4): 30-34.
- [5] 韦祥,李本威,杨欣毅,等.某型涡扇 发动机燃调故障联合仿真[J].系统 仿真学报,2018,30(10): 3923-3932.
- [6] HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex [J]. Journal of Physiology, 1962(160):106-154.
- [7] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) IEEE, 2015:1-12.
- [8] GUNTER K, THOMAS U, ANDREAS M. Self-normalizing neural networks[J].Journal of Physiology, 2017:1-102.