超导氢电推进系统研究进展*

Development of Superconducting Hydrogen Electric Propulsion System

■ 白明亮 杨文将 闫炬壮 张若璞 曲子冰 / 北京航空航天大学 / 姚轩宇 蒋承志 / 中国航发研究院

超导氢电推进系统结合了超导技术、氢能技术和低温冷却技术,具有高功率密度、高能源转换效率和节能减 排等多重优势,目前处于深入研究和设计开发阶段。

导技术和低温冷却技术 是提升电气部件性能的 关键解决方案,尤其超 导部件在功率密度和效率方面具备 显著优势。液氢适用于机载超导材 料和电气部件的冷却,氢气可以作 为涡轮机或燃料电池的燃料,从而 实现氢能源在机载系统中的循环使 用。因此,超导氢电推进系统整合 了超导技术、氢能技术和低温冷却 技术,成为解决大功率航空电推进 系统现有问题的潜力方案。超导氢 电推进系统是一种面向大功率、高 效率航空电推进的创新动力系统, 按基本架构可分为燃料电池电推进 系统(FCEPS)、燃料电池混合电 推进系统(FCHEPS)、涡轮电推进 系统(TEPS)和涡轮混合电推进系 统(TEHPS)。表1总结了不同架构 的氢电推进系统应用于不同类型飞 行器的研究进展,相关研究团队开 展了超导技术和冷却技术探索,评 估了不同类型系统架构的技术成熟 度和可行性。此外,如德国氢燃料 电池航空电驱总成(BALIS)、英 国零碳飞行(FlyZero)和空客公司 ZEROe等在研氢电推进项目涉及到

类型	研究单位	应用机型	功率级别	研究内容		研究阶段	
				冷却技术	超导技术	仿真	试验
燃料电池 电推进 系统	挪威科技大学	ATR 72–600	4.1 MW	氢气态/气液两相 冷却	半超导/全超导电动机、 超导线缆	\checkmark	
	空客公司	_	500 kW	制冷机/液氢冷却	超导电动机、超导交直 流线缆、超导故障限流器	\checkmark	\checkmark
燃料电池 混合电推 进系统	美国伊利诺伊大学	波音737-800	28 MW	液氢冷却	超导电动机	\sim	\sim
	英国吉凯恩公司	小型支线	1.5 ~ 2 MW	氦-氢燃料热交换	超导电动机	\sim	\sim
	韩国昌原国立大学	空客A320	45 MW	氦-氢燃料热交换	转子半超导电动机、超 导线缆	\checkmark	
涡轮电推 进系统	德国斯图加特大学	空客A320	44 MW	液氢冷却	全超导发电机/电动机	\sim	
	罗罗公司	空客A321XLR	41 MW	液氢冷却	全超导发电机/电动机、 超导线缆	\checkmark	
	美国佛罗里达州立大学	N3-X	50 MW	氢液态/气态/气液 两相冷却	超导发电机/电动机、 超导线缆	\checkmark	
涡轮混合 电推进 系统	俄罗斯中央航空发动机研究院	雅克-40LL	500 kW	液氮冷却	超导电动机	\sim	\checkmark
	俄罗斯莫斯科航空学院	_	5 MW	氢气液两相冷却/ 液氮冷却	半超导发电机、全超导 电动机	\checkmark	\checkmark

表1 超导氢电推进系统研究进展

*基金项目:先进航空动力创新工作站项目(HKCX2020-02-014)

布雷顿制冷机可以满足ASCEND的 冷却需求,然而考虑到系统可能应 用于大功率氡燃料电池/氡涡轮推进 飞行器, 液氢冷却被认为是最佳解 决方案。ASCEND演示装置预计将 于2023年年底进行测试和评估,并 计划在2025年完成飞行验证。

燃料电池混合电推进系统

FCHEPS利用液氢作为燃料和冷却 介质,氢燃料电池和能源转换装置 共同产生电能驱动超导电动机推进 飞行器。FCHEPS在FCEPS基础上 增加锂电池以提供额外的动力输出, 如图3所示。由DC/AC逆变器、超 导交流线缆、超导电动机和桨扇组 成的超导电推进单元具备拓展性,

空客公司先进超导和低温动力 总成系统(ASCEND)用于演示500 kW级纯电/混合电推进方案^[2],如图 2所示。研究结果表明1 kW冷量的

保守水平功率密度约为0.79 kW/kg 燃料电池电推进系统 FCEPS利用液氢作为燃料和冷却介 和 0.3 kW/kg。

质,通过燃料电池产生电能驱动超 导电动机推进飞行器。FCEPS 主要由 液氢储罐、燃料电池、DC/DC 功率变 换器、DC/AC 逆变器、超导电动机和 桨扇等部件组成,如图1所示。

低温冷却、燃料电池推进技术,但

目前并未考虑应用超导技术。

液氢作为冷却介质为低温冷却 回路提供低温环境,蒸发后的液氢 与氧气在燃料电池中反应产生电能, 实现超导电动机机载冷却和氢能源 循环利用。FCEPS具备高功率密度、 高能源转换效率和环境友好等优势。 然而,燃料电池的工作效率和功率 水平直接决定系统整体功率等级, 目前主要适用于小型通勤飞机(航 程< 500 km) 和支线飞机(航程< 2000 km)等规模较小的应用。

挪威科技大学研究团队开展了 燃料电池电推进系统在4.1 MW级 ATR 72-600支线飞机的应用研究, 比较了氢饱和蒸汽/液态冷却形式、 超导电动机直驱/齿轮驱动桨扇形式 对系统功率密度和效率的影响,并在 保守、基线和乐观等3个发展水平下 计算分析[1]。研究结果表明,氢以液 态形式进入冷却回路时,超导电动 机可选择MgB。或REBCO材料,而 以饱和蒸汽形式只能选择REBCO材

图 2 空客公司先进超导和低温动力总成系统[2]

图 3 燃料电池混合电推进系统架构

图 1 燃料电池电推进系统架构

可以根据需求功率设计分布式推进 架构。

FCHEPS具有高能效、多能源协 同工作和环保等优势,燃料电池和 锂电池的组合可提供灵活的动力输 出,适应不同工况并节约能源。根 据系统部件当前发展水平,FCHEPS 主要适用于通勤飞机和支线飞机(航 程<2000 km)。

美国伊利诺伊大学飞行器高效 电气技术中心(CHEETA)研究团队 以波音公司的737-800为基线,联合 多家科研单位共同设计了28 MW级 燃料电池混合电推进系统^[3],如图4 所示。研究结果表明,FCHEPS相比 于传统的涡扇动力系统具有分布式 电推进、高电化学效率以及低推力 衰减率等优势,但液氢储罐和燃料 电池的存在会增加飞机起飞质量。

英国吉凯恩(GKN)公司开发的氢电混合动力系统(H₂GEAR)采 用低温氦冷却回路维持部件工作温 度,并与低温氢燃料回路进行换热^[4]。 研究表明,低温氢/氦协同冷却方案 可保障系统冷却的安全性和稳定性, 相同推进功率下综合功率转换效率 由84%提高至94%,同时能减轻约 12%的质量。固定最大起飞质量时质 量减轻可以转化为额外的燃料分配 和储存,从而将飞机的航程提高约3 倍。预计到2025年,H₂GEAR演示装 置将完成系统验证。

韩国昌原国立大学以空客A320 商用飞机为基线,设计了总功率为 45 MW的燃料电池混合电推进系统⁶⁵。 FCHEPS包含9个并联单元,主动力 源为40 MW氢燃料电池,辅助能源 为5 MW锂电池。单个超导电动机额 定功率为5 MW、额定电压3.3 kV、 转速为7000 r/min。研究表明,应用

图 4 美国伊利诺伊大学 CHEETA 飞行器^[3]

超导技术和液氢冷却技术可将电动 机的功率密度由3.03 kW/kg提升至 6.25 kW/kg。实验室规模的5 kW超导 电动机使用氢-氦换热器实现了氢稳 定液化,并将高温超导(HTS)线圈 温度保持在30 K。

涡轮电推进系统

TEPS利用液氢作为低温冷却回路的 冷却介质,将蒸发后的氢气与空气 混合燃烧驱动涡轮发动机,并通过 超导发电机将机械能转化为电能。 TEPS主要由液氢储罐、涡轮机、超 导发电机/电动机、超导线缆、低温 电力电子器件和桨扇组成,如图 5 所示。超导电推进单元仍具备拓展 性,可根据涡轮燃烧室的设计选择 是否保留原有的航空燃油供给路径。

TEPS具有高功率密度、高能量 密度和节能减排等优势,且系统功率 水平可根据涡轮机的发展迭代不断 增加,适用于支线飞机(航程<2000 km)和短航程飞机(航程<4500 km)。

德国斯图加特大学在2018年提 出了液氢冷却涡轮电推进运输级概 念飞机"北极星"(Polaris),动力系 统总功率为44 MW^[6],如图6所示。 液氢用于中冷换热式涡轮压缩机的 冷却,同时在作为燃料燃烧之前冷 却超导发电机/电动机和超导线缆。 Polaris利用液氢冷却、超导电力传 输和燃气轮机中冷等协同效应,在

图 5 涡轮电推进系统架构

相同的设计任务下,与A320相比可 降低61.39%的能耗、80%的氮氧化 物排放。

罗罗公司的研究团队开展了涡 轮电推进系统在220座、4630km的 A321 XLR中程飞机的应用研究,系 统总功率为41 MW, 电气部件全部 采用液氢冷却^[7]。研究分析了直流母 线电压 (1000~4000 V)、超导电动 机转速(3500~15000 r/min)和交 流电频率(175~1000 Hz) 对系统 质量和效率的影响。研究结果表明, 母线电压为1500 V、交流电频率为 350 Hz时, TEPS质量最小, 但整体 效率较低。高转速(15000 r/min)超 导电动机在质量上最具优势,但额 外的变速箱和冷却系统会牺牲推进 效率,因此低转速(3500 r/min)超 导电动机直驱桨扇是最佳推进方案。 HTS线缆所占的系统质量份额较小, 而超导发电机/电动机总质量份额约 为30%,低温电力电子质量份额约为 44%

美国佛罗里达州立大学针对 美国国家航空航天局(NASA)的 N3-X涡轮电推进飞行器开发了热网 络模型,模拟由超导发电机/电动机、 超导线缆和低温电力电子组成的低 温冷却回路¹⁸,如图7所示。采用氢 作为制冷剂,在液态、气态和气液 两相等3种情况下模拟计算了维持部 件工作温度所需的冷却剂质量流率。 研究结果表明,气液两相冷却方式 对于TEPS冷却需求的液氢质量流率 最小,采用终端部件代替电力电子 器件可以显著降低总体热负荷和减 少冷却剂需求。

涡轮混合电推进系统

TEHPS以涡轮发动机为主动力装置、

图 7 N3-X涡轮电推进飞行器^[8]

氢燃料电池或锂电池为辅助动力装 置,液氢作为燃料和冷却介质,蒸 发后的氢气供给涡轮燃烧室或氢燃 料电池产生机械能或电能。图8(a) 表示串联式TEHPS架构,超导发电 机、氢燃料电池/锂电池提供电能 输出,通过直流母线和低温电力电 子器件驱动分布式超导电推进单元, 实现高压传输以减少整体质量;图8 (b)表示并联式TEHPS架构,氢燃 料电池/锂电池输出的电能通过超导 电动机转化为机械能,与涡轮发动 机输出轴联结齿轮箱驱动桨扇产生 推力。

TEHPS通过改进燃气涡轮循环,

使涡轮发动机始终运行在最佳工作 点,降低总体功耗,适用于支线飞 机(航程<2000 km)、短程飞机(航 程<4500 km)和中程飞机(航程< 10000 km)。

俄罗斯中央航空发动机研究院 于2021年7月完成了涡轮混合电推 进验证机雅克-40LL首次试飞。涡 轮发电机功率为400 kW,转速为 12000 r/min,效率可达96%,锂电池 为辅助动力装置。超导电动机质量 约为100 kg,转速为2500 r/min,可 以产生400 ~ 500 kW功率,液氮冷 却剂流量为6 L/h。

俄罗斯莫斯科航空学院设计的

涡轮混合电推进系统中半超导发电 机额定功率为5 MW,转子为永磁材 料,定子为HTS线圈,理论功率密 度可达36.5 kW/kg。全超导电动机 额定功率为2.5 MW,方案1中电动 机的定子和转子材料均为HTS线圈, 功率密度可达23 kW/kg;方案2中 电动机定子绕组采用MgB₂材料,转 子采用HTS线圈,功率密度约为16 kW/kg⁽⁹⁾。氢气液两相冷却可以实现 超导发电机/电动机和低温整流器连 续且稳定的冷却。超导发电机原理 样机为100 kW、12000 r/min,理论 功率密度为2.4 kW/kg,液氮冷却流 量需求为3.2 L/h。

关键技术发展

为促进超导氢电推进系统在航空电 推进领域的广泛应用,需要在多个 技术层面持续进行发展和创新,包 括液氢储存、超导电机、超导配电、 低温电力电子技术、氢涡轮燃烧室 和能量储存等领域。

机载液氢储存技术

机载液氢储存技术需要在储罐 材料、结构和密封等方面进行创新 与突破,发展轻量化、高强度和耐 腐蚀的储罐罐壁材料和绝缘材料, 同时优化储罐的几何结构、机械结 构和热结构。此外,液氢供给支路 应配备防火和泄漏探测装置、压力 释放装置等安全措施,同时改善密 封和隔热技术以减少液氢蒸发和能 量损失。

兆瓦级高功率密度超导电机技术

实现兆瓦级高功率密度超导电 机关键要在超导材料、冷却系统和 验证样机等方面进行创新和突破。 探索高性能、易制备的超导材料 以提高临界电流密度,如REBCO、 MgB₂等高温超导材料。氢/氦协同 冷却、氢气液两相冷却以及固氮蓄 冷等冷却技术具备机载应用前景。 目前,实验室级超导电机多为小型 缩比样机,实际功率密度与理论值 存在差距。因此,亟须推动大功率 超导电机样机的研制、加工以及地 面测试平台的建立,验证超导电机 技术和冷却技术的可行性和成熟 度。

超导配电技术

超导配电技术需要在超导材 料、高效冷却和故障保护等领域展 开创新与突破。YEBCO和MgB₂等高 温超导材料具备低损耗、低成本和 高效制冷等优势,有望逐步取代目 前广泛采用的BSCCO材料。采用液 氮冷却、液氢冷却以及相变冷却等 高效冷却方式可以满足超导配电装 置的冷却需求。同时,优化超导输 配电装置的电流控制策略,并建立 高效的故障检测和保护机制。中高 压HTS电缆的技术成熟度不断提高, 为其快速应用于超导氢电推进系统 提供了巨大可能性。

兆瓦级低温电力电子技术

低温电力电子器件需要开发轻量化和紧凑化的解决方案以减轻部件 质量,半导体器件的选择和拓扑结构 的设计至关重要。Si MOSFET、IGBT 和GaN HEMT等器件在低温下具有较 低的导通损耗和开关损耗。对于兆瓦 级DC/DC功率变换器,多级飞行电 容器拓扑结构和多电平Buck/Boost型 非隔离拓扑结构具有高效率、高功 率密度等优势。对于兆瓦级DC/AC 逆变器,3L-NPC、3L-ANPC、混 合型多级ANPC-H等拓扑结构具有 低谐波输出、高效率等优势。此外, 器件封装、栅极驱动和保护、EMI 滤波器等技术也是低温电力电子器 件应用于兆瓦级超导氢电推进系统 的关键因素。

氢涡轮燃烧室技术

氢涡轮燃烧室需要在燃烧室设 计与控制、材料创新和氢损伤防护 等方面进行创新与突破。为满足氢 燃料发动机的长期使用需求,优先 考虑奥氏体合金用于高压氢管路, 并探索耐高温氢腐蚀的材料以保障 燃烧室和涡轮等高温高压部件的稳 定性。

高效储能技术

氢燃料电池需要高效、安全的 燃料储存和配送系统,同时加强开 发更具活性和廉价的催化剂材料, 以及稳定性和导电性更优的膜电解 质材料。质子交换膜燃料电池具有 高功率密度、快速启动时间和较低 工作温度等优势,目前更适合应用 于超导氢电推进系统。高能量密度 锂电池需要开发性能更佳的电池管 理系统实时监测和控制电池参数, 同时改进电池材料和电解液的设计 以提高离子传输速率和承载功率。 锂离子电池、锂聚合物电池的能量 密度为150~350W・h/kg, 而固态 锂电池具有能量密度高、安全性高 和使用寿命长等优势,在高能量密 度电池领域具有重要前景。

结束语

融合高效和高功率密度的超导技 术、高比能量和优异冷却能力的氡 能技术以及轻质小型化的低温冷却 技术,超导氢电推进系统具备实现 机载大功率、高效率推进和能源重 复利用的潜力。根据通勤、支线、 短程和中程飞行器的性能指标和节 能减排目标,超导氢电推进系统可 考虑燃料电池/涡轮、电推进/混合 电推进等架构配置。然而,机载液 氢储存、兆瓦级高功率密度超导电 机、超导输配电、兆瓦级低温电力 电子、氢涡轮燃烧室和高效能量储 存等关键技术仍需要持续创新和突 破。随着超导电机和超导线缆等部 件技术的日益完善,超导氢电推进 系统将是面向零碳发展目标的重要 解决方案。 航空动力

(白明亮,北京航空航天大学, 博士研究生,主要从事超导氢动力系 统设计和空天智能电推进技术研究)

参考文献

- [1] HARTMANN C, NOLAND J K, NILSSEN R, et al. Dual use of liquid hydrogen in a next-generation PEMFC-powered regional aircraft with superconducting propulsion[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4760-4778.
- [2] YBANEZ L, COLLE A, NILSSON E, et al. ASCEND: The first step towards cryogenic electric propulsion[C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2022, 1241(1): 012034.
- [3] ANSELL P J. Hydrogen-Electric Aircraft Technologies and Integration: Enabling an environmentally

sustainable aviation future[J]. IEEE Electrification Magazine, 2022, 10(2): 6-16.

- [4] HALES MO, WOOD N, HARRISON S, et al. H2GEAR Hydrogen Electric Powertrain - System Architecture[C].
 AIAA AVIATION 2023 Forum. 2023: 3874.
- [5] DA SILVA F F, FERNANDES J F P, DA COSTA BRANCO P J. Barriers and challenges going from conventional to cryogenic superconducting propulsion for hybrid and all-electric aircrafts[J]. Energies, 2021, 14(21): 6861.
- [6] NAM G D, SUNG H J, HA D W, et al. Design and analysis of cryogenic cooling system for electric propulsion system using liquid hydrogen[J]. Energies, 2023, 16(1): 527.
- [7] BOLL M, CORDUAN M, BISER S, et al. A holistic system approach for short range passenger aircraft with cryogenic propulsion system[J]. Superconductor Science and Technology, 2020, 33(4): 044014.
- [8] BARNOLA I, FREEMAN D, CHEETHAM P, et al. Exploring options for integrated cryogenic circulation loop of superconducting power devices on electric aircraft[C].
 2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). IEEE, 2019: 1-8.
- [9] DEZHIN D S, DEZHINA I N. Development of the future aircraft propulsion system based on HTS electrical equipment with liquid hydrogen cooling[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(4): 1-5.