一种化繁为简的过渡态控制规律设计方法

A Transient Control Law Design Method for Aero Engine

■ 杨琴 时瑞军 周剑波/中国航发动研所

为了满足发动机各方面限制并尽可能缩短加速时间,人们开展了大量的过渡态控制规律的研究,但大部分方 法采用的是复杂的原理和算法,实现起来较为困难且通用性差。而采用基于发动机模型仿真的供油规律设计 方法,可将复杂的过渡态问题转变为较为简单的稳态问题,化繁为简,有利于工程应用。

研究背景

加減速性能是发动机过渡态过程的 重要指标^{11]}。为了能使发动机快速 安全地从一个状态转换到另一个状 态,必须考虑发动机结构和性能方 面的限制,例如,加速时应考虑压 气机喘振线、涡轮温度限制、转速 限制及结构强度限制等,而减速时 主要考虑燃烧室熄火限制^{12]}。因此, 如何设计合理的发动机过渡态控制 规律成为发动机控制系统设计的关 键,相关研究主要集中在给定约束 条件下,如何使发动机从某一个工 作状态过渡到另一个工作状态的时 间最小。

目前,研究最多的过渡态控制 规律设计方法为动态规划法,即在 发动机动态特性计算模型基础上, 利用性能目标函数,通过优化算法 来寻找过渡态控制规律。这种方法 涉及复杂的数值算法,存在计算量 大、通用性差等缺点,不易于工程 实现⁽³⁾。另一类过渡态控制规律设 计方法为提取功率法,即通过在发 动机稳态特性计算模型的基础上额 外增加转子提取功率,同时考虑控 制约束条件,利用适当的控制规律 形式实现过渡态最优控制规律设计。 这种方法较为直观、快速,但发动 机特性计算模型中忽略了容积效应 等影响因素,设计精度仍有待提高。

本文参考功率提取法的基本思 想,提出基于发动机建模和仿真软 件Turbomatch设计了慢车以上状态 的发动机过渡态控制规律,并通过 发动机瞬态模型仿真来评估该设计 方法。建立发动机稳态和瞬态模型, 可方便地植入发动机部件特性图, 同时考虑容积效应的影响,以避免 复杂的算法和推导,过程直观、快速, 具有通用性和实用性,有利于工程 应用。

设计原理

当发动机部分或全部性能变量随时间 而变时,就进入了过渡态。过渡态控 制主要关注两点:如何使发动机从一 个稳定状态改变到另一个稳定状态, 以及如何保证状态改变过程中发动机 不超出它的工作极限范围^[4]。

稳态过程中,发动机各部件及 气流通道处于热力平衡状态;而过 渡态过程中,这种平衡不再存在。 额外的燃油流量进入燃烧室使发动 机产生剩余功率,促使发动机加速; 燃油流量的减少使发动机不能产生 足够的功率以维持当前涡轮功率,从 而减速直到另一平衡状态出现。根 据该原理,利用仿真软件Turbomatch 建立的发动机稳态模型中的可调变 量——剩余功率,成为仿真发动机 非平衡状态下的关键变量。增加剩 余功率会使发动机工作线向上移动 靠近喘振线,而减少剩余功率会使 发动机工作线向下方移动。

依据这个特征,可以将压气机 特性图上发动机安全工作区域分割 成无数的点,如图1所示,而这些点 对应着发动机工作点性能参数,包 括换算的进口空气质量流量、压比、 燃油流量、涡轮进口温度、输出功 率等。压气机特性图上点的密度取 决于剩余功率改变量,剩余功率改 变量越小,可以获得的工作线越多, 发动机性能数据量也越大。选取两 状态间等转速线上的任一数据点的 燃油流量组成发动机两状态间加/减 速控制规律。

发动机模型

发动机模型采用英国克兰菲尔德

大学研发多年的建模和仿真软件 Turbomatch。通过预先编程的发动 机部件模块,根据发动机结构和设 计特点,Turbomatch能仿真任一类 型的发动机非设计点和过渡态性能。 为展示该方法的应用过程,本文选 用某型发动机设计数据建立发动机 稳态模型,如图2所示,图中通过预 先编好的程序模块用搭积木的方式 将涡轴发动机各部件组装起来。稳 态模型输入文件中设置的设计点参 数如表1所示。 发动机瞬态模型采用容积法, 一般认为燃气是不可压缩的,因此 进入控制容积中的气流等于从控制 容积中输出的气流。事实上,发动 机容腔中储存了一部分燃气,导致 进入发动机的气体质量流量与流出 的气体质量流量不再相等^[5]。因此 在瞬态模型中需要考虑发动机部件 容积,与稳态模型的输入文件比较, 瞬态模型输入文件增加了一些新的 参数,例如,有效部件容积、转子 惯性等参数,如表2所示。根据容积

表1 某型涡轴发动机设计点参数

部件	参数	数值		
进气道	压力恢复系数	0.98		
	质量流量/(kg/s)	4.6		
压气机	压比	17.5		
	效率	0.79		
	类似喘振裕度	0.85		
	放气量/(kg/s)	0.92		
燃烧室	压力损失	0.05		
	效率	0.999		
	出口温度	1626 K		
涡轮	效率	0.87		
动力涡轮	效率	0.91		

表2 瞬态模型所需参数

部件	参数	数值
压气机	有效部件容积/m ³	0.03
燃烧室	有效部件容积/m ³	0.05
涡轮	有效部件容积/m ³	0.05
	转子惯性/ (kg・m ²)	0.112
	转子转速/ (r/s)	745
动力 涡轮	有效部件容积/m ³	0.15
	转子惯性/(kg・m ²)	0.15
	转子转速/ (r/s)	348.3
	出口温度/K	1626
涡轮	效率	0.87
动力 涡轮	效率	0.91

图2 Turbomatch建立的稳态模型

特点,表2中部件容积估计的越准确, 瞬态仿真结果越准确。

控制规律设计 ^{获取数据库}

控制规律数据库的获取主要基于 发动机稳态模型仿真,通过增加或者 减少燃气发生器剩余功率这一变量获 得大量工作线。本文展示的仿真中 剩余功率变化量为压气机功率的2%, 如图3和图4所示。仿真计算得到这 些工作线上的每一个点对应的燃油流 量、涡轮进口温度、涡轮燃气出口温 度、输出功率和喘振裕度等信息。这 些数据组成了过渡态控制规律设计的 数据库,选取数据库中符合发动机限 制条件的燃油流量组成加速控制规律 或减速控制规律。

选取数据点

选取加速控制规律数据点时, 需要考虑压气机喘振裕度限制、涡 轮温度限制和转速限制等^[6]。这些限 制值可以在部件或整机设计和试验 中获取,例如,某型发动机压比限 制值为21,超过21会对压气机强度 造成损伤。而选取减速控制规律数 据点时,需要考虑的因素较少,本 文仅考虑燃烧室的最小温度限制, 因为进入燃烧室燃油流量的大幅下 降可能导致燃烧室熄火,这样在数 据库中选取数据点时涡轮进口温度 成为重要指标,涡轮进口温度不能 太低,必须保持在某一值之上。实 际应用中,这个最小温度值可通过 台架试验获取。

在图3中选取符合限制条件的数据点组成两条加速控制规律,分别标识为CL1 ACC和CL2 ACC,组成减速控制规律的数据点则从图4上选取。这些数据点信息内容包括相对换算转速 n_{ger} 、与压气机功率比值CW、涡轮燃气出口温度TGT、喘振裕度Z、压比PR和换算燃油流量 W_{fer} 等。本文以Z≥0.7,TGT≤1400K, n_{ger} ≤1.06, PR≤21为限制条件选取的加速控制规律数据点。

图3上满足上述限制条件的数据 点很多,为方便对比研究,本文选 取两条满足限制的加速控制规律作 比较和分析,具体数据见表3和表4。 比较CL1 ACC和CL2 ACC数据, 可以预测加速控制规律CL2 ACC会 导致更高的涡轮燃气温度并且使发 动机更靠近压气机喘振线,但是加 速控制规律CL2 ACC数据取自于较 大的剩余功率点,那么可以预测加

表3 根据限制条件获取加速控制规律1

CWIO	TGT	Ζ	PR	CL1 ACC	
GW/%				$n_{_{ m gcr}}$	$W_{ m fer}$
0	825.9	0.75906	8.9869	0.73	0.002818
0.02	884.1	0.78445	9.7006	0.75	0.003104
0.04	944.8	0.80946	10.663	0.78	0.003366
0.06	997.6	0.82952	11.104	0.79	0.003610
0.08	1048.9	0.84819	11.537	0.8	0.003839
0.1	1104.5	0.86694	12.288	0.82	0.004053
0.12	1159.5	0.88422	13.395	0.85	0.004233
0.14	1226.5	0.90394	15.19	0.9	0.004398
0.12	1248.2	0.90598	17.237	0.95	0.004300
0.1	1273.8	0.91231	18.709	1	0.004253
0.08	1273.7	0.9113	19.287	1.021	0.004179
0.06	1260.2	0.90609	19.524	1.034	0.004085
0.04	1234.1	0.89694	19.544	1.042	0.003965
0.02	1213.8	0.88965	19.599	1.05	0.003860
0	1211.2	0.88777	19.901	1.06	0.003798

速控制规律CL2 ACC会产生较大的加速率,从而获得较短的加速时间。

仿真结果及分析 _{仿真结果}

从数据表中提取相对换算转速

表4 根据限制条件获取加速控制规律2

CINI (ct	TGT	Ζ	PR	CL1 ACC	
CW/%				$n_{_{ m ger}}$	$W_{ m fer}$
0.17	1314.5	0.93622	10.851	0.73	0.005147
0.17	1301.1	0.93163	11.333	0.75	0.005047
0.17	1288.9	0.92683	12.064	0.78	0.004930
0.17	1285.8	0.92563	12.275	0.79	0.004900
0.17	1282.7	0.92447	12.485	0.8	0.004870
0.17	1277.4	0.92224	13.008	0.82	0.004807
0.17	1274	0.92014	13.898	0.85	0.004726
0.17	1291.1	0.92382	15.502	0.9	0.004665
0.17	1348.3	0.93833	17.817	0.95	0.004690
0.14	1357.1	0.93922	19.232	1	0.004558
0.13	1384.1	0.94692	20.002	1.021	0.004567
0.09	1327.7	0.9283	19.978	1.034	0.004321
0.06	1279.6	0.91216	19.859	1.042	0.004125
0.03	1229.8	0.89508	19.713	1.05	0.003925
0	1211.2	0.88777	19.901	1.06	0.003798

和换算燃油流量两列数据组成加速 控制规律并写入发动机瞬态模型输 入文件中,可以得到控制规律下发 动机加速性能曲线,如图5~图7 所示。

从图5可以看出,在两条加速 控制规律下发动机均能运行在喘振 线以下,但是相较于加速控制规律 CL1 ACC,加速控制规律CL2 ACC 使发动机更靠近喘振边界工作,而 图6显示在加速控制规律CL2 ACC 作用下发动机涡轮燃气出口温度 TGT较CL1 ACC作用下高出70K左 右,显然在控制规律CL2 ACC作用 下发动机要遭受更强的热应力。以 此为代价获得的是如图7显示的在 加速控制规律CL2 ACC作用下发动 机获得了较快的加速,仅2s发动机 加速就达到目标转速,而在加速控 制规律CL1 ACC下,发动机需4s达 到目标转速,这与设计加速控制规 律时预测的一致。

用相似的方法,根据涡轮燃气 进口温度最小限制值选取满足条 件的数据点组成减速控制规律CL1 DEC和CL2 DEC,组成CL2 DEC的数 据取自较大负剩余功率产生的数据点。 虽然在减速控制规律CL2 DEC作用 下,发动机更快到达低转速状态, 但是涡轮进口温度下降速度快且下 降超调量大。这种情况下发动机工 作线更接近最小熄火线,燃烧室容 易发生熄火,导致发动机空中停车。

对比分析

对于航空发动机,涡轮进口温 度和喘振裕度是发动机运行安全的 重要参数,因此,选取这两项参数 验证过渡态控制规律的控制效果。 将发动机稳态工作线、发动机过 渡态工作线和过渡态控制规律CL2 ACC相关参数的数据点绘制到同一 坐标中,获取如图8和图9所示曲线。 红色曲线显示的是发动机过渡态工 作仿真结果,绿色曲线则是发动机 稳态工作线对应的参数,而蓝色曲 线为组成过渡态控制规律CL2 ACC 对应的数据点。

图8显示发动机加速过程中涡轮 进口温度与控制规律CL2 ACC数据 点中的涡轮进口温度基本一致,图 9则表明加速过程喘振裕度低于控 制规律预期的喘振裕度,这意味着 实际发动机加速工作线比组成加速 控制规律数据点对应的工作线要更 偏离喘振边界。减速过程的仿真结 果同样显示涡轮进口温度与控制规 律数据点对应的涡轮进口温度一致。 通过对比分析表明该方法设计的过 渡态控制规律对加减速过程涡轮进 口温度具有较好的预测,而对喘振 裕度的预估偏保守。

结束语

本文基于Turbomatch建立的涡轴发 动机模型,提出了一种过渡态控制 规律设计方法,并通过仿真和对比 分析展示了应用过程和控制效果。 控制规律设计过程不涉及复杂原理 和算法,具有通用性,便于工程应用。 从仿真结果及对比分析来看,用该 方法设计的控制规律对过渡态过程 中的发动机性能具有一定的预测性, 例如,对涡轮进口温度TET能做出 较准确的预测,对喘振裕度的预测 则偏保守。该方法也为进一步优化 过渡态控制规律提供了一个良好的 基础,在发动机结构强度等限制条 件确定的情况下,可以依据不同优 化目标,例如,最短加速时间、延 长使用寿命等,依托该方法生成的 数据库,通过迭代计算优化,获取 发动机过渡态控制规律的最优化控 制。

(杨琴,中国航发动研所,工程 师,主要从事发动机控制系统研究)

参考文献

- Philip P, Walsh P P, Fletcher P. Gas Turbine Performance (2nd ed) [M]. Oxford: Blackwell Science, 2004: 445-454.
- [2] Garg S. Aircraft Turbine Engine Control Research at NASA Glenn Research Center: TM-2013-217821 [R]. NASA, Ohio: Glenn Research Center, Cleveland, 2013.
- [3] 施洋,屠秋野,蔡元虎,等.燃气涡轮发动机 加减速供油控制规律最优设计方法[J].航 空动力学报,2013,28(11):2561-2571.
- [4] 赵连春,马丁利.飞机发动机控制:设计、系统分析和健康监视[M].北京:航空工业出版社,2011:109.
- [5] Janikovic J. Gas Turbine Transient Performance Modeling for Engine Flight Path Cycle Analysis[D]. Bedfordshire: Cranfield University, 2010.
- [6] 樊思齐.航空发动机控制:下[M].西安:西 北工业大学出版社,2008:75-77.