激波矢量控制喷管技术分析

Technical Analysis of Shock Vector Control Nozzle

史经纬 王占学/西北工业大学 梁爽/中国航发商发

激波矢量控制喷管结构简单、响应速率快、推力矢量效率高,用于未来先进航空发动机高落压比排气系统, 可使战斗机提高空中优势和生存概率。

着先进机载武器、红外/ 电磁探测系统等相继投入 使用,战斗机的生存环境 日益恶化。为了能在各类空战中取 得优势、提高生存率,对战斗机性 能提出了更高的要求(如超机动、 超声速巡航、短距/垂直起降及隐身 性能等),推力矢量技术成为一种必 不可少的关键技术^[1]。

推力矢量技术最终体现在航空 发动机排气系统的推力矢量喷管上, 一般可分为机械矢量喷管和气动矢 量喷管。其中,机械矢量喷管起步 早、成熟快,在现役战斗机上已得 到了广泛应用,但自身的一些缺陷, 如大幅增加发动机的质量、增多高 温环境下运动部件、提高部件冷却 要求、减弱隐身能力、降低可靠性、 增加成本等,限制了在未来高推重 比航空发动机上的使用^[2]。而具有 相同功能、质量更轻的固定几何气 动矢量喷管逐渐步入研究者的视线, 这类矢量喷管借助二次流对喷管主 流进行控制,使之发生预期的偏转, 具有结构简单、无作动部件、质量 轻、成本低、响应快、结构完整性好、 维修性强等特点^[3-5]。

激波矢量控制(SVC)喷管是 一种典型的气动矢量喷管,其工作 原理是在收扩喷管的扩张段喷射入 高压二次流,形成激波,促使主流 发生偏转,从而形成可控的矢量角, 如图1所示。该喷管在高设计落压比 排气系统上比其他气动矢量喷管有 较明显优势,能用于二维、轴对称 收扩喷管,在火箭发动机及航空发 动机上具有应用潜力[6-10]。

激波矢量控制喷管气动 构型设计

激波矢量控制喷管气动构型设计主 要包括主喷管型面设计和二次流构 型设计。主要设计参数包括收扩喷 管构型、喷管面积比、扩张段长度、 二次流喷口形态、二次流喷口面积、 二次流喷口位置、二次流喷口角度 等,需要在设计及非设计落压比工 况下评估激波矢量控制喷管气动性 能。主要性能参数包括主/次流流量 系数、推力系数、推力矢量角、推 力矢量效率等。

激波矢量控制喷管可用于轴对 称和二维构型的收扩喷管,如图2所 示。在相同特征几何参数下,如进

图1 激波矢量控制喷管的工作原理

(a) 轴对称构型

(b) 二维构型

图2 不同构型激波矢量控制喷管

(a) 二次流喷射特性

图3 激波矢量控制喷管二次流多孔喷射构型下的流场

口直径、收敛/扩张段长度、面积比、 二次流喷射位置、二次流喷口面积 及角度相同时,二维激波矢量控制 喷管可实现的最大矢量角高于轴对 称激波矢量控制喷管,但在考虑外 流影响时轴对称激波矢量控制喷管 推力矢量效率更高。喷管构型的选 择,除了考虑激波矢量控制特性, 还应考虑与飞行器的融合设计。

激波矢量控制喷管用于高设 计落压比排气系统时, 推力矢量性 能更好。对比激波矢量控制技术 用于设计落压比为4.5:1、8:1、 14:1等喷管时,能够发现,设计 落压比越低,激波矢量控制法能实 现的矢量角越小。其主要的原因是, 设计落压比越小,扩张段长度或者 角度越小, 诱导激波越容易和喷管 另一侧壁面相交,导致侧向力/矢量 角增长慢或者逐渐减小。

二次流喷口形态包括多孔喷射、 单缝喷射(含不同展向长度)、多缝 喷射等。一般而言,喷口形态越复 杂,导致的流场结构越复杂,对激 波形态、涡系发展等影响越大,如 图3所示。试验及数值结果表明,在 低落压比工况时,多缝喷射略有优 势,但大部分工况下,全展长单缝 喷射结构简单、推力矢量效率高。

二次流喷口面积、位置及角度 的设计,需要与喷管工作工况综合 考虑。一般而言,二次流喷口面积 会影响二次流的流量系数,进而影 响推力矢量效率,喷口大推力矢量 效率高,但是对喷管结构影响大; 二次流喷口位置靠后,有利于实现 大的矢量角;二次流喷射角度的优 化与二次流落压比(NPR)等需要 综合考虑,如图4所示。能够发现, 通过调整二次流落压比或者二次流 喷口几何参数, 使得诱导激波与喷 管唇口相交时,能够获得最大的矢 量角度,目前激波矢量控制喷管实 现的最大矢量角约为24°。

研究表明,激波矢量控制喷管推 力矢量效率范围在0.75°/%~1.6°/% 之间。有大推力矢量角需求时,需 要从发动机引出10%甚至更多的高 压二次流,这会对发动总体性能产 生很大的影响,因此需要从新技术 的优化或探索等角度出发,提升激 波矢量控制喷管的效率。

激波矢量控制喷管气动/ 红外评估技术

激波矢量控制喷管的气动构型优化 设计能够提升战斗机推力矢量能力, 保障战斗机的作战效能和生存能力。 除此以外,抑制排气系统的红外辐 射也是提升现代战斗机生存率的关 键。排气系统的高温壁面和高温燃 气是战斗机的主要红外辐射源,其 红外辐射能量主要集中在 3~5 µm 波段,是机载红外搜索与跟踪系统、 红外制导导弹的主要探测区间。综 合考虑推力矢量和隐身性 (thrust vectoring & stealth)的航空发动机排 气系统设计理念正逐渐成为发展新 趋势。

在排气系统推力矢量及红外辐 射特性等方面已经取得的研究进展 表明:作为未来高推重比航空推进

图4 二次流喷射角度对激波矢量喷管性能的影响

器排气系统备用技术的气动矢量技 术,其基本的探索性研究已经初见 成效: 排气系统红外辐射特性研究 也日趋成熟,能够为排气系统隐身 设计提供有力支撑。但是,如何考 虑气动矢量与红外辐射综合设计仍 未全面开展,特别是基于气动控制 的排气系统,二次流既对壁面及主 流具有冷却作用,又使得掺混特性 比常规喷管更剧烈,所包含的流场 特征,如激波系、涡系、分离流等, 在影响推力矢量的同时也影响红外 辐射(见图5)。而气动矢量与红外 辐射之间的相互影响关系、不同设 计参数下二者的相干机制等尚未有 明确定论。

在综合考虑推力矢量和红外辐 射的排气系统设计将成为主流方向 的形势下,基于二次流控制的排气 系统气动矢量和红外辐射耦合特性 评估应是先进排气系统设计过程中 必须解决的基本科学问题,急需进 一步的关注与研究。

激波矢量控制喷管与 发动机整机耦合技术

激波矢量控制喷管的控制依赖从航 空发动机风扇/压气机的引气实现。 确定激波矢量控制喷管与航空发动 机的整机耦合方案是评估激波矢量 控制喷管与发动机整机耦合性能的 基础。一般而言,研究部件与整机 匹配最直观的方法是整机试验,将 激波矢量控制喷管安装在航空发动 机上,进行地面或高空验证,但是 开展此类试验研究难度过大、成本 偏高。首先,结构改动大,需要在 发动机风扇/压气机不同位置开孔引 气,并增加二次流流路系统;其次, 测试内容众多,包括不同发动机工 况、二次流引气量、二次流引气位置、 二次流喷射位置、二次流喷射角度 等。试验研究方法在技术评估阶段 并不可行,该类部件与整机匹配性 问题的研究仍需以数值模拟为主。

目前,较为可行的激波矢量 控制喷管与发动机整机耦合方法 是:基于试验设计技术(design of experiment)产生具有代表性的试验 点,对各试验点进行数值模拟,并 把所得的结果进行近似建模,将该 近似模型与航空发动机整机模型通 过压力、流量等平衡关系耦合起来, 即整机耦合模型。此模型能够用来 评估不同工况下激波矢量控制喷管 与航空发动机的匹配特性,即整机 耦合模型在不同引气量及不同引气 位置工况下对航空发动机共同工作 点、激波矢量控制喷管性能的影响, 如图6所示。

激波矢量控制喷管面临 技术问题及发展趋势 _{大幅提升推力矢量效率以降低}

对发动机性能的影响

激波矢量控制喷管所需的二次 流引自风扇/压气机等高压部件, 这 意味着获得推力矢量角是以牺牲发 动机总体性能为代价的。研究发现, 从风扇后引出10%的二次流进行激 波矢量控制可获得14°推力矢量角, 推力矢量效率为1.4°/%,造成推力 下降约15%,耗油率增加约13%。 实现更大的推力矢量角,需要更多 的高压二次流,发动机总体性能的 损失更大,因此,激波矢量控制面 向工程化时必须解决推力矢量效率 低的问题,用尽可能少的二次流获 得最大推力矢量角。应进一步开展 喷管设计参数智能优化、激波气动/ 机械矢量方法组合、激波/其他气动 矢量方法组合等策略研究, 以期实 现高推力矢量效率。

实现飞机/排气系统一体化设计

不同构型飞机后机体形状差别 较大,激波矢量控制喷管与后机体融 合处的几何形态也不尽相同。喷管出

结果:推力、推力系数、耗油率、推力矢量角……

图6 激波矢量控制喷管与航空发动机整机耦合方法

口附近几何形态会严重影响排气的波 系结构发展和流动方向,导致激波矢 量控制偏转规律发生变化。同时,发 动机排气也会影响后机体外流状态, 在推力矢量偏转时,与外流来流相互 作用,在飞机后体外蒙皮上产生不同 大小的作用力,影响飞机的飞行姿态。 因此,在激波矢量控制喷管设计时, 需要考虑在特定后机体构型下,喷管 内外流气体流动机理及激波矢量控制 偏转规律,以支撑激波矢量控制喷管 与未来可面对目标机型的飞发一体化 设计。

发展可靠的控制方法实现对飞 行姿态控制

为了确保激波矢量控制喷管在 飞行器上稳定工作,需要确定一套 激波矢量控制规律,如以二次流流 量或压比作为控制变量实现对矢量 角度的精准控制,制定引气流量范 围、可实现的推力矢量角度范围以 及引气流量与推力矢量角之间的对 应关系。发展可靠的推力矢量控制 上应用不可或缺的一步。激波矢量 控制的实施会直接影响发动机工况、 性能以及飞机的飞行姿态,未来的 推力矢量控制系统应当与发动机控 制系统及飞行控制系统耦合,形成 一体化矢量控制系统。该系统在飞 机飞行时实时监测飞行状态参数, 指导发动机及矢量喷管的及时响应, 确保飞行器机动操作的安全稳定。

结束语

激波矢量控制喷管技术利用横向射 流对超声速主流进行控制,对二维、 轴对称收敛-扩张喷管均可实施,在 高落压比工况下气动性能好、推力 效率高,在减轻质量、隐身及一体 化设计等方面具有显著优势。目前, 该技术成熟度在5~6级,近几年 该技术的成熟度可能得到大幅提升。 预计未来各种气动推力矢量控制方 法可相互结合、互为补充,在不降 低发动机总体性能的基础上显著提 升飞行器机动能力,促进飞行器一 体化综合控制系统的发展。 **航空刀** (史经纬,西北工业大学,副研 究员,主要从事航空发动机先进排 气系统综合优化设计、流场非接触 测量技术与流动控制技术研究)

参考文献

- [1] 何大军. 固体发动机燃气二次喷射推力
 向量控制技术[C]. 上海: 中国宇航学
 会, 2004: 274-278.
- [2] Deere K A. Summary of fluidic thrust vectoring research conducted at nasa langley research center[C]. The 21st AIAA applied aerodynamics conference. 2003: 1-18.
- [3] 吴雄, 焦绍球, 杜长宝,等. 固体火箭发 动机燃气二次喷射推力矢量控制试验 研究[J]. 2008, 31(5): 457-460.
- [4] 金捷, 雷金春, 廖华琳, 等. 激波诱导 轴对称气动矢量喷管壁面静压分布的 试验[J]. 航空动力学报, 2007, 22(10): 1700-1703.
- [5] 刘辉, 邢玉明. 激波诱导矢量喷管流
 场的数值模拟及试验[J]. 推进技术,
 2011, 32(4): 544-549.
- [6] 孙得川, 由旭. 发动机引流推力矢量方 案数值研究[J]. 推进技术, 2016, 37(3):
 436-442.
- [7] 王占学,王玉男,李志杰,等.基于激波 控制的流体推力矢量喷管试验[J].推 进技术,2010,31(6):751-756.
- [8] 史经纬. 固定几何气动矢量喷管流动 机理及性能评估技术研究[D].西安:西 北工业大学, 2015.
- [9] Jimenez A. Thrust vectoring for advance fighter aircraft, propulsion package development[R]. AIAA-2001-3991, 2001.
- [10] Richard K S. Characteristics of future military aircraft propulsion systems[R]. AIAA-2013-0466, 2013.