电传动技术探讨

Discussion on Electric Drive Technology

■ 宋益明 李方成/中国航发动研所

电传动是利用发动机带动发电机发电或直接通过蓄电池提供电力,再利用电力带动电机驱动主旋翼、尾桨的 传动方式,顺应了环境友好、高效节能的发展大趋势,在未来新概念飞机中具有广阔的发展前景。

年来,直升机传动系统的新 技术、新概念、新理论层出 不穷, 尤其是近年出现的轻 小型新概念电动直升机。受到这些电动 垂直起降飞行器(eVTOL)的启发,一 些直升机制造商开始探索用新型的电传 动系统替代传统的机械传动系统。电传 动系统取消了减速器和传动轴, 主要包 括发电机、控制器、驱动电机等部件(如 图1所示)。受电池功率密度及容量限 制,正常工作时发电机由发动机驱动, 所产生的电力通过控制单元调制,驱动 电机带动主旋翼和尾桨工作, 待电池技 术成熟后可直接采用电池驱动电机工 作,进一步简化系统结构。

电传动技术发展现状

中小型电动飞机电传动技术的发展 主要得益于近30年来高性能永磁电 机、大功率逆变器、高能量密度锂 电池的技术进步。电动飞机领域的 初创公司通过借鉴和转移电动汽车 的电驱动技术成果, 带动了飞机电 传动技术的进步凹。电动汽车电驱 动系统出于成本的考虑, 虽然对电 驱动系统的质量和体积有一定要求, 但没有电动飞机要求严格, 因此目 前直升机和垂直起降飞机大功率电 传动技术研究尚处于初级阶段。从 开发成本和周期的角度来看, 电传

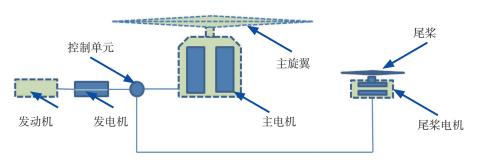


图1 直升机电传动概念示意

动飞机开发成本和周期比传统形式 低很多,大量eVTOL初创公司选择 自行研发电传动系统, 以更好地应 对电动飞机行业内竞争。

2013年12月, 德国E-Volo公司 研发了全球首架电动直升机VC200, 并成功首飞。该直升机与传统直升机 不同, 机顶有18个可独立运作的电 动旋翼,不会产生废气。莱奥纳多公

司也在电动尾桨方面开展了大量的研 究,已达到了技术成熟度4级(TRL 4)的水平,通过与英国布里斯托尔 大学合作, 在一架 AW139 中型双发直 升机的尾梁上改装了一个电动尾桨, 并且在旋转塔上进行了长达10h的地 面试验。同期,美国国家航空航天局 (NASA)的GL-10电动飞机(如图2 所示)也在2014年完成了第一次飞

图2 GL-10电动飞机

图3 Vahana电动垂直起降飞机

行,这是一款无人驾驶的飞机,有约 3m的翼展和10个驱动电机。贝尔公司在直升机电传动应用上也开展了大量研究与试验。

在2018年国际直升机协会主 办的国际直升机博览会(Heli-Expo 2018), 德国ZF航空技术公司也展 示了正在研发的电动尾桨模型。按 照规划,公司将先探索使用1000kW 电机的电动尾桨,预计能用于4t级 轻型直升机,以后将扩展到其他级 别的直升机上。同年,由空客公司 投资的Vahana电动垂直起降飞机 成功首飞(如图3所示);2019年5 月,空客公司推出的城市空中交通 (UAM)的涵道电传动飞行器City Airbus 在德国完成首飞,这是一种四 座垂直起降飞行器,采用全电驱动 方式,满足低噪声、零排放的环保 要求。

电传动技术特点

与传统的机械传动相比较,电传动 具有以下几种特点。 一是传动链结构简单。相对机械传动系统,电传动采用电能进行传输,通过电能转化为机械能,最终实现主旋翼和尾桨驱动。没有极端复杂的多级齿轮传动系,同时也省略了相互间繁杂精密的配合、支撑、安装等。

二是无突出的动力学问题。由于取消了细长的传动轴结构、无高速输入级等,避免了突出的动力学问题,减小了系统动力学风险。

三是机械应力分散,可靠性高。通过电机定子线圈与转子间的磁场相互作用来传递力矩,机械应力分散,没有齿轮啮合处极高的应力集中载荷,更没有发生齿轮散裂、崩落的致命危险,有效地避免了机械减速器极端恶劣的工况。

四是低振动、低噪声传动。相 对机械传动系统,没有齿轮啮合冲 击,电传动噪声和振动水平极低, 乘坐舒适性好。

五是免安装调整。在安装时没 有同轴度校准等繁琐的环节,大大 简化了直升机的安装、拆卸、调整、 维护、检查等过程。

六是维修保养简单。电传动系 统的机械部件少,需要维护的部件、 环节简单,维修保养工作量小。

七是主旋翼/尾桨传动链可变速 比。为避免高速前飞时前行桨叶激 波,需降低旋翼转速。传统的直升 机由于发动机的正常工作的转速范 围较小,通过降发动机转速来降旋 翼转速的幅度很有限。而电传动的 功率、转速能够实时控制,可实现 主旋翼/尾桨可变速比传动。

八是操纵构造简单,可靠性高。 主旋翼、尾桨驱动电机具有调速性 能,可在较大转速范围内正常工作, 实现无级变速传动,飞机采用定距 螺旋桨时,可取消操纵系统。

九是可冗余性设计好,安全性高。传统机械传动系统往往是单一传动链传动,一旦传动链上一个环节出现问题,直接导致直升机的飞行安全出现问题,安全性隐患大。电传动可适应飞机总体冗余设计需求,采用多电驱动方式,当一个回路出现问题时,另外的回路仍可正常工作,实现驱动系统的冗余备份。

电传动关键技术

综合目前的相关领域的研究进展, 要实现电传动技术在直升机上的应 用,应着力解决以下的关键性技术 问题。

电传动总体技术

电传动比传统的机械传动装置 在结构和控制等方面都显得更为灵活。电动力系统各部件之间主要采 用电气/电子连接,不同的总体结构 排布、空间布局和控制策略所带来 的整机性能各不相同。对于不同使

用环境和功用的电动飞机, 其结构也 不相同。因此,进行电动飞机电传动 系统的供电体制、总体构型、载荷特 性、性能参数匹配、总体热管理方案 及技术路线、动力分配与能源管理、 质量的评估与优化、主旋翼与尾桨驱 动电机协调控制及故障诊断监控,是 总体技术研究的重要内容。

高功率密度电机设计

与直流电机、异步电机、开关 磁阻电机等类型的电机相比, 永磁 同步电机具有功率密度高、效率高、 功率因数高等优点,配合高性能的 矢量控制或者直接转矩控制技术, 可以获得优良的运行性能。因此, 非常适用于对功率密度、效率等要 求苛刻的场合,如电动飞机、电动 汽车和轨道交通等。目前, 在研的 纯电动飞机或混合电动飞机, 基本上 都采用了永磁同步电机, 电动汽车特 别是乘用车几乎都是采用永磁同步电 机,而永磁牵引电机技术也是轨道交 通牵引电机中的尖端技术。

电机作为电传动系统的关键驱 动部件, 高功重比是其关键指标, 主 要体现在大扭矩、大功率和小体积上。 由于受功率匹配性、可靠性、安装空 间、质量、润滑、散热及复杂载荷情 况等严酷条件限制,而电机本身电磁 参数多,各参数的选取又是相互矛盾 的,如何确定一组优化的电磁设计参 数是实现高效高密度的难点。因此, 电机电磁/冷却/机械综合优化设计、 多电磁参数多目标全局优化设计、 高频非正弦情况下电机损耗的精确 计算、高效冷却技术、超导材料应 用等是高密度驱动电机设计研究的 重要内容。

高效高密度电子控制技术

传统机械减速器传动链的传动

比是恒定的, 电动飞机各驱动部件 之间没有机械构件连接,直接靠电 功率传输能量,然后将电能转化为 机械能实现螺旋桨驱动。高性能控 制技术是实现高转矩密度目标的关 键,特别是对于主旋翼、尾桨驱动 电机, 其运行工作制较为复杂, 负 载转矩和转速在较大范围内作非周 期变化,这种工作制包括经常性过 载,其值可远远超过额定值,需要 在最大限度地提高转矩密度的同时, 获得较好的动态和稳态运行特性, 满足直升机飞行控制的要求。

新概念电动飞机的供电体制一 般采用高压制式,如西门子公司采 用的580V高压直流供电制式[2]。在 高压直流电源体系中, 大功率绝缘 栅双极型晶体管(IGBT)器件的饱 和导通压降和开关特性制约了功率 逆变换器效率的提升,通常功率变 换效率不超过96%。研究如何提高 驱动控制系统的效率和功率密度是 难点之一。

因此,设计一个适应电动飞机 不同状态、不同姿态下传动特性的 自适应控制系统,以满足体积小、 实时性好、精度高、可靠性高、动 态响应快、效率高等要求,是高效 高密度电子控制技术的目标。

电磁兼容技术

电传动系统的高压、高电流和 快速转换率,是潜在的重要的电磁 干扰源之一。在传统控制系统的脉 冲宽度调制(PWM)变换技术中, 逆变器中的IGBT器件不断地开关, 其开关频率高达上千赫[兹],同时 其所承受的电流很大。器件在电压 不为零的情况下开通或电流不为零 的情况下关断,也会带来很大的开 关耗损和噪声。

另外, IGBT器件工作在开关状 态时,有一部分能量以热的方式释 放, 若不采取冷却措施会使得IGBT 模块温升过快, 并超过IGBT 允许的 工作范围,这也限制了开关的PWM 频率, 使系统的输出产生脉动, 尤 其是转矩脉动, 从而对主旋翼、尾 桨驱动产生不利影响。

随着技术进步, 近年来出现了 直流环节谐振型逆变器和极谐振型 软开关逆变器,由于它采用零电压 或零电流开关技术, 具有开关损耗 小、电磁干扰小、噪声低、高功率 密度和高可靠性等优点而受到广泛 关注。

结束语

电池、电机、电力和电子等技术的 进步推动了电传动技术在飞行器上 的应用发展,并收获了可喜的成果, 但在新概念电动直升机上的应用还 面临着诸多技术挑战,如电传动总体 技术、高功率密度电机设计、高效 高密度电子控制技术、电磁兼容技 术等。展望未来,随着科学技术的 进步,相信电传动在未来的新概念 飞行器领域必有一番作为。 [5] [5] [7] [7]

(宋益明,高级工程师,中国航 发动研所, 主要从事直升机传动系 统设计研究与验证工作)

参考文献

- [1] 穆作栋,程文渊,宋刚.电推进技术 在航空业的应用[J]. 航空科学技术, 2019 11:30-35
- [2] Siemens. Electric propulsion components with high power densities for aviation[R/ OL]. (2015-06-14)[2021-5-26]. http://siemens.com/answers.